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Abstract. In this work, we implement, verify, and validate a physics-based digital twin solution applied to a floating offshore1

wind turbine. The digital twin is validated using measurement data from the full-scale TetraSpar prototype. We focus on the2

estimation of the aerodynamic loads, wind speed, and section loads along the tower, with the aim at estimating the fatigue3

life-time of the tower. Our digital twin solution integrates: 1) a Kalman filter to estimate the structural states based on a linear4

model of the structure and measurements from the turbine, 2) an aerodynamic estimator, and 3) a physics-based virtual sensing5

procedure to obtain the loads along the tower. The digital twin relies on a set of measurements that are expected to be available6

on any existing wind turbine (power, pitch, rotor speed, and tower acceleration), and motion sensors that are likely to be7

standard measurements for a floating platform (inclinometers and GPS sensors). We explore two different pathways to obtain8

physics-based models: a suite of dedicated Python tools implemented as part of this work, or the OpenFAST linearization9

feature. In our final version of the digital twin, we use components from both approaches. We perform different numerical10

experiments to verify the individual models of the digital twin. In this simulation realm, we obtain estimated damage equivalent11

loads with an accuracy of the order of 5% to 10%. When comparing the digital twin estimations with the measurements from12

the TetraSpar prototype, the errors increased to 10%-15% on average. Overall, the accuracy of the results appears promising13

and demonstrates the possibility to use digital twin solutions to estimate fatigue loads on floating offshore wind turbines. A14

natural continuation of this work would be to implement the monitoring and diagnostics aspect of the digital twin, to inform15

operation and maintenance decisions. The digital twin solution is provided with examples as part of an open-source repository.16

1 Introduction17

The offshore floating wind turbine market is expected to grow in the next decades as the technology is gaining in maturity,18

with several floating wind turbine prototypes already tested and commissioned, such as the TetraSpar, developed by Sties-19

dal Offshore(Stiesdal Offshore, 2022). Operation & maintenance (O&M) costs can account for approximately one-third of20

offshore wind farm life-cycle expenditures for a fixed-bottom project and are expected to be higher for remote (floating)21

projects (Castella, 2020). Reducing the O&M costs is therefore an impactful and effective means to lower the costs of floating22

offshore projects. Digital twin solutions are increasingly being considered to follow products during their life cycle to assess23

component conditions, guide predictive maintenance, and thereby reduce O&M costs. A review of digital twins for power sys-24
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tems is found in Song et al. (2023). Digital twins often include a virtual sensing component, whose role consists in providing25

information that are not measured by the physical system, and a structural health monitoring component to assess the condition26

of the system. Virtual sensing technology is usually achieved using physics-based or data-driven approaches; both approaches27

relying on measurements from the physical system to infer and extrapolate information about its current state. Physics-based28

approaches use a numerical model of the system, whereas data-driven approaches either use ad-hoc algorithms or machine-29

learning techniques. This work presents the development, verification and validation of a physics-based digital twin for floating30

wind turbines, as a proof of concept for future maturation of the technology.31

Digital twins for wind turbine applications have recently become a topic of research interest. The current authors explored32

the topic of physics-based digital twins in previous work, where a method to estimate tower loads on land-based turbines was33

developed (Branlard et al., 2020a, b). The approach relied on a Kalman filter model (Kalman, 1960; Zarchan and Musoff,34

2015), which combines a linear physics-based model of the structure with measurements from the turbine to perform a virtual35

sensing of the tower section loads and estimate the fatigue of this component. The measurement data was taken from the36

supervisory control and data acquisition (SCADA) system using sensors readily available on most turbines. The approach used37

a mix between an augmented Kalman filter approach (Lourens et al., 2012), where the loads are estimated with the states of the38

system, and a physics-based aerodynamic estimator for aerodynamic thrust. Bilbao et al. (2022) used a Gaussian process latent39

force model instead to estimate the forcing of the system, and thereby obtain the section loads along the tower. Drivetrains are40

another component that has recently been an application of digital twin, with physics-based approaches presented for instance41

in (Mehlan et al., 2022, 2023), and data-driven models in Kamel et al. (2023).42

In spite of the term “digital twin” becoming recently popular, it is heavily based on the fields of structural-health monitoring43

and load estimations (or more generally, virtual sensing), which have long been topics of research. For instance, Iliopoulos44

et al. (2016) used physics-based modal decomposition to estimate the dynamic response on the substructure of a fixed-bottom45

wind turbine. Neural networks have been used to establish transfer functions or surrogate models based on SCADA data to46

obtain wind turbine loads with the aim of performing conditional monitoring (see, e.g. Cosack (2010); Schröder et al. (2018)).47

Kalman filters were introduced in fields other than wind energy to perform load estimation, for instance in the following48

references: Auger et al. (2013); Ma and Ho (2004); Eftekhar Azam et al. (2015); Lourens et al. (2012). Kalman filtering49

has been extensively used in wind energy to estimate rotor loads and improve wind turbine control, see, e.g. Boukhezzar50

and Siguerdidjane (2011); Selvam et al. (2009); Bottasso and Croce (2009); Bossanyi (2003). Load estimations were also51

achieved using hybrid-techniques combining physics based on SCADA data by Noppe et al. (2016). Other load estimation52

techniques may be used, such as lookup tables (Mendez Reyes et al., 2019), modal expansion (Iliopoulos et al., 2016), machine53

learning (Evans et al., 2018), neural networks (Schröder et al., 2018), polynomial chaos expansion (Dimitrov et al., 2018),54

deconvolution (Jacquelin et al., 2003), or load extrapolation (Ziegler et al., 2017).55

In this work, we build on our previous work and present a digital twin solution for floating wind turbines that relies on56

physics-based models and a Kalman filter. We apply the digital twin to the TetraSpar structure and use measurements from57

the full-scale prototype. In section 2, we provide an overview of our digital concept, the vision for future application, and the58

TetraSpar prototype on which the digital twin is applied. In section 3, we present the individual components of the digital twin,59
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and run some isolated verification studies on them. In section 4, we present results from the digital twin application first using60

numerical experiments, and then using measurements from the TetraSpar prototype, before concluding. To avoid lengthening61

the main text, we provide derivations (some being important contributions of this work) and additional results in appendices.62

2 Overview of the digital twin concept63

In this section, we provide an overview of our digital twin concept and how it is applied in this study.64

2.1 Long-term vision of the digital twin concept65

Many definitions and applications of digital twins are possible. The vision for the concept discussed in the work is to follow66

the life-cycle of a wind turbine in real-time and ultimately provide tangible signals to inform O&M decisions. Our goal is to67

achieve this by relying only on measurements expected to be available on most wind turbines, thereby avoiding the extra cost68

of adding sensors. We illustrate our approach and vision in Figure 1. The digital twin is intended to run in real-time on a cloud

Aero-/hydro-dynamics, structural 
dynamics (OpenFAST or Python)

Aerodynamic estimator

State estimator

Environmental conditions

Wind turbine

Optional measurementsVirtual sensing

Monitoring and diagnostics O&M 

Linear wind turbine model

Nonlinear wind turbine model

Virtual sensing models

Structural health models

Digital twinModeling Real system

Measurements
Linearized models for faster evaluation
and integration with Kalman filter

Models to go from various states to 
quantities of interest (QoI)

Kalman filter estimates structural 
states and augmented states

wind, sea state

Compute QoI from virtual sensing  
models and estimated states 
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validate the extrapolation
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Runs in realtime on a cloud platform

Figure 1. Overview of the digital twin concept. Dashes lines indicate features that are outside the current scope.

69

platform. It combines a set of models (on the left of the figure) with data from the real system (on the right) to perform the70

estimation of various states and eventually produce diagnostics that can be use to inform the O&M. The data from the real71

system are taken from high-frequency measurements from the SCADA system (e.g., power, pitch, rotor speed, etc.). The states72

estimated by the digital twin include aerodynamic states (wind speed, thrust) and motions of the structure (e.g., surge, pitch,73

tower deflection). The core algorithm in the estimation is a Kalman filter that uses a linear wind turbine model. The estimated74

states are used in an “virtual sensing” step, to produce quantities of interests (QoI), such as the loads at key locations of the75
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structure. The QoI are then intended to be postprocessed by a monitoring and diagnostic tool to generate the data needed to76

perform condition-based O&M.77

2.2 Narrowed scope78

The boxes in Figure 1 that are surrounded with dashes are not addressed in the current work, namely: the structural health79

modeling, monitoring and diagnostics, and O&M decisions. These are essential steps necessary to achieve our final vision,80

but they are postponed to future work. Dashed lines indicate possible options that may be exploited in the future but are also81

outside of our scope: the use of historical data to assist in the diagnostics, the use of estimates to perform modeling updating,82

and real time implementation.83

This work therefore focuses on the estimation of states and environmental conditions under the assumption that the estimated84

quantities can replace costly measurements and eventually be used for O&M decisions. We intend to provide a proof of concept85

paving the way for future commercial applications. A detailed description of each of the boxes surrounded with plain lines will86

be provided in section 3.87

2.3 System studied88

2.3.1 The TetraSpar prototype89

Throughout this article, the system studied is the TetraSpar floating offshore prototype. The system consists of a floating90

platform and station keeping system developed by Stiesdal Offshore in collaboration with partners Shell, RWE and TEPCO91

Renewable Power, and a 3.6-MW wind turbine with a rotor diameter of 130 m developed by Siemens Gamesa Renewable92

Energy. A sketch of the system is provided in Figure 2. The prototype was installed off the coast of Norway and commissioned93

in November 2021. The prototype turbine is equipped with additional sensors (labeled “Optional measurements” in Figure 1),94

which we will use to validate the estimated QoI.95

2.3.2 Numerical experiments96

Prior to using measurement data, we will use simulations (referred to as “numerical experiments”) in place of the real system97

to feed-in data to the digital twin. The advantage of this approach is that the QoI are directly accessible and can be compared98

to the estimates for verification purposes.99

Data for the numerical experiments is obtained using OpenFAST simulations (Jonkman et al., 2023). A model of the100

TetraSpar floating platform and the wind turbine was implemented in OpenFAST based on data provided by the manufac-101

turers. The operating conditions of the turbine were extracted from SCADA data and a controller was tuned to approximate102

these conditions. We use the following modules of OpenFAST (see Table 2, and Jonkman et al. (2023)): MAP (mooring lines),103

HydroDyn (hydrodynamics), ElastoDyn (tower and blade elasticity; rigid floater), AeroDyn (aerodynamics), InflowWind (wind104

inflow), ServoDyn (controller interface).105
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Figure 2. Sketch of the TetraSpar prototype

For the numerical experiments, we use synthetic turbulent wind fields generated using TurbSim (Jonkman and Buhl (2006)).106

In particular, we will often use the same wind field, that we will refer to as the “turbulent step”, where a deterministic ramp107

and drop are added to a turbulent field. The advantage of this 10-min wind field is that is covers all the operating regions of the108

turbine in a challenging way. The wind speed at hub height for the turbulent step can be seen in Figure 6.109

2.3.3 Main aspects of the structural model110

We model the structure using a set of 8 degrees of freedom (DOFs), as illustrated in Figure 3. The platform is represented as a111

rigid body and its motion is described using 6 DOFs: surge, sway, heave, roll, pitch, yaw, respectively noted x,y,z,ϕx,ϕy,ϕz .112

The tower bending in the fore-aft direction is represented using one generalized DOF, qt, associated with a Rayleigh-Ritz shape113

function, taken as the first fore-aft mode shape of the tower (see, e.g., Branlard (2019)). The shape function along the tower114

height, zt, is written Φ(zt), with Φ(0) = 0 at the tower bottom, and Φ(LT ) = 1 at the tower top, where LT is the tower length.115

The shaft rotation is noted ψ, so that the rotation speed of the rotor is ψ̇ where the dotted notation indicates differentiation116

with respect to time. The rotor-nacelle-assembly (RNA) is modeled as a rigid body. The full vector of DOFs is therefore:117

q = [x,y,z,ϕx,ϕy,ϕz, qt,ψ]. The equations of motion will be recast into a first order form by concatenating the vector of118

DOFs and its time derivative: x = [q, q̇].119

In this work, we perform a simplifying assumptions, e.g., neglecting the influence of nacelle yaw on the system. The mea-120

surement data is conveniently provided in the fore-aft and side-side system of the nacelle. The main assumption is therefore121
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Figure 3. Notations for the structural modeling of the floating wind turbine, assuming no yawing of the nacelle. Left: main points

(F,T,N,O,G) and inertial coordinate system (i). Right: degrees of freedom (x,y,z,ϕx,ϕy,ϕz, qt,ψ) and main loads: aerodynamics (T ,

Q), hydrodynamics (6× 6 mass, damping and stiffness matrices: Mh, Ch, Kh. Wave excitation force neglected), mooring (6× 6 stiffness

matrix Km) and gravity (g).

that we assume a rotational symmetry of the platform and mooring system about the yaw axis. We intend to lift this assumption122

in future work.123

3 Individual components of the digital twin124

In this section, we describe and verify the individual components of the digital twin presented in Figure 1. In section 4, we will125

present applications of the digital twin where all the individual components are combined together.126

3.1 Wind turbine measurements127

The measurements used as inputs to the digital twin are listed in Table 1. These outputs are stored in a database at a sampling128

rate of 25 Hz. We expect these measurements to be standard sensors for any floating wind turbine. The TetraSpar prototype is129

equipped with additional measurements that will be used to validate the implementation of the digital twin (see section 4).130

3.2 Nonlinear wind turbine models131

Similar to our previous work (Branlard et al., 2020b), we use two different pathways to obtain nonlinear and linear models of132

floating wind turbines: OpenFAST and WELIB (Wind Energy LIBrary, Branlard (2022)). The different modeling approaches133

are illustrated in Table 2 and further presented below.134
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Table 1. Measurements used as inputs to the digital twin.

Signal Symbol

Blade pitch angle θp

Rotor speed ψ̇

Generator torque* Qg

Surge and Sway x,y

Roll and Pitch ϕx,ϕy

Nacelle accelerations r̈N

* Obtained from the power measurement using Equation 2.

Table 2. Approaches and tools used to obtain nonlinear and linear models.

pHydroDyn

pyMAP

YAMS

OpenFAST 
(ElastoDyn,  

HydroDyn, MAP, 
AeroDyn)

Tool

Structural model

Usage

Hydrodynamics

Moorings

Structural model
Hydrodynamics

Moorings

Analytical

Numerical

Numerical

Numerical
and 

analyticalAerodynamics

Formulation &
Linearization

Approach

WELIB
(Python
tools)

OpenFAST

2

1

Virtual sensing

Virtual sensing

The OpenFAST approach was described in Section 2.3.2. The WELIB approach consists of a set of dedicated open-source135

Python tools. We developed this Python code to offer additional modularity and granularity, for instance to allow for: simple136

linearization of the hydrodynamics (obtention of 6x6 matrices), linearization of hydrodynamics with respect to wave elevation,137

linearization with respect to parameters (Jonkman et al., 2022), and interactive time-stepping of linear and nonlinear models.138

One shortcoming is that WELIB does not cover the full range of options available with OpenFAST, which is a continuously139

evolving, extensively verified and validated tool. For this work, we implemented the following tools in WELIB: 1) YAMS, a140

symbolic structural dynamics package to obtain the equations of motion of an assembly of rigid and flexible bodies analytically,141

and allow for their analytical linearization (Branlard and Geisler, 2022); 2) pHydroDyn, a Python version of the module142

HydroDyn (with a subset of HydroDyn’s functionality) to determine the hydrodynamic loads; and 3) pyMAP, a wrapper around143

the MAP module of OpenFAST, to obtain the mooring quasi-statics. With these three additions, it is possible to perform144

nonlinear simulations of floating wind turbines using WELIB and perform comparisons with OpenFAST. The benefits of145

WELIB over OpenFAST is the possibility to obtain analytical linear models and gain physical intuitiveness on the model.146

Results will be presented in see Section 3.3.147
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3.3 Linear wind turbine models148

As part of our digital twin concept, we have chosen to use linear wind turbine models and a Kalman filter for the core of the149

state estimation (see Section 3.5). Nonlinear models and an extended Kalman filter could be considered in future iterations. In150

this section, we describe how the linear models from OpenFAST and WELIB are obtained.151

3.3.1 OpenFAST linearization152

OpenFAST can provide full-system linearization of its underlying nonlinear models by using a mix of analytically- and finite-153

difference-derived Jacobians (Jonkman and Jonkman, 2016; Jonkman et al., 2018). The linearization process provides the154

state-space model (δẋ = Aδx + Bδu) and output equation (δy = Cδx + Dδu) for small perturbations (indicated with δ) of155

the internal states (x), inputs (u) and outputs (y) of OpenFAST, around the linearized operating point. OpenFAST provides the156

linear model for the entire set of states, inputs and outputs present in the model (including virtual sensor-type outputs typically157

written to an output file and not used internally). In this work, we extract subsets of the A, B, C, D matrices and combine158

them to form the linear model of the state estimator (see Section 3.5).159

3.3.2 WELIB linearization160

WELIB performs the linearization of the structure, hydrodynamics and moorings independently, before combining them into161

one model. The aerodynamic loads are not linearized because a dedicated aerodynamic estimator is used in this work (see162

Section 3.4). The steps are as follows:163

– The structural equations are linearized analytically using our symbolic framework (Branlard and Geisler, 2022). We164

introduce a notion of “augmented inputs” to linearize the equations of motion without an explicit knowledge of the165

external forces. The process is described in Appendix A.166

– We compute the 6×6 linearized rigid-body hydrodynamics matrices (mass matrix Mh, damping matrix Ch and stiffness167

matrix Kh) corresponding to the six rigid-body motions of the platform. We obtain them using numerical differentiation168

in two different ways: 1) using the Python implementation of the HydroDyn module by performing rigid-body perturba-169

tion of the full platform, or, 2) using full-system linearization of the HydroDyn module. The latter provides Jacobians of170

the hydrodynamic loads as function of motions of the individual hydrodynamic analysis nodes (of which models often171

have hundreds to thousands of). To transfer these individual Jacobians to the reference point and obtain the 6× 6 ma-172

trices, we developed and used the method presented in Appendix B. The consistency between the two approaches was173

verified. The second approach is not straightforward to implement, therefore, we upgraded the OpenFAST HydroDyn174

driver to provide the 6× 6 hydrodynamic matrices directly without the need to use the full-system linearization.175

– The linearized 6× 6 mooring stiffness matrix, Km, is obtained by calling the linearization feature of the MAP module,176

and transferring the Jacobian to the reference point using the method outlined in Appendix B.177

– The linearized equations of motion are assembled as:178
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[M0 + Q0Mh]δq̈ + [C0 + Q0Ch]δq̇ + [K0 + Q0(Kh + Km)]δq = δfa + δfh (1)179

where the matrices with subscript 0 originate from the linearization of the structure (see Appendix A). The term Q0 is used here180

to map the 6 rigid-body platform degrees of freedom to the full vector of degrees of freedom. The term δfa is an approximation181

of the aerodynamic loads, and will be discussed in Section 3.4. The term δfh is an approximation of the hydrodynamic wave-182

excitation loads and it will be mapped into the inherent model noise of the Kalman filter in Section 3.5. Equation 1 is recast183

into a first order system to obtain the state matrix A.184

3.3.3 Verification of the linear models185

In this section, we compare results from the OpenFAST nonlinear model, the OpenFAST linear model and the WELIB linear186

model, for free-decay simulations of the TetraSpar structure. The OpenFAST linear model is obtained about the operating187

point defined by q0 = 0 and ψ̇0 = 10 rpm. All models (including the OpenFAST nonlinear model) use 8 DOFs. The initial188

conditions are set to q = [1,−1,0.6,0.5,0.5,0,−0.2,0] (in m and deg) and ψ̇ = 10 rpm, after which the structure is free to189

decay.190

The time responses from the linear and nonlinear models are in strong agreement when only the structure is considered191

(see results in Appendix C). Below, we present results for a model that includes hydrodynamics, but without wind or external192

waves (still water). We set the hydrodynamic drag to zero due to the difficulty in linearizing this term and will let the state
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Figure 4. Free decay of the structure using non linear and linear models for a case including moorings and hydrodynamics (still water). Time

series of the main DOFs.
193

estimator account for this modeling uncertainty. Results of the free-decay simulation are given in Figure 4, for a time period194

of 153 s corresponding to the surge frequency. When hydrodynamics is included, the time responses from the linear models195

are in strong agreement with the nonlinear OpenFAST results for the surge, heave, pitch and tower fore-aft DOFs. The sway,196

roll, and rotor speed responses tend to drift as the simulation time advances. The WELIB linear model has difficulty capturing197

the yaw response. We believe that some of the error in the yaw signal is due to differences between the formulations of the198

three-dimensional rotations in OpenFAST and WELIB, resulting in a difference of coupling between the DOFs. The coefficient199

of determination (R2) is indicated in Figure 4, comparing the linear models to the reference OpenFAST simulations for each200

response. In all cases, the OpenFAST linear model is closer to the nonlinear OpenFAST model than the WELIB model.201
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To further quantify the differences between the models, we compare the natural frequencies obtained using the OpenFAST202

linear and WELIB linear models in Table 3. Overall, the frequencies between the two linear formulations agree very well (less

Table 3. Comparison of system frequencies obtained using the WELIB and OpenFAST linear models with and without hydrodynamics (no

addded mass, damping, hydrostatics, or wave excitation)

Structure + mooring Structure + mooring + hydrodynamics

Mode OpenFAST [Hz] WELIB [Hz] Rel. Err [%] OpenFAST [Hz] WELIB [Hz] Rel. Err [%]

Surge 0.0088 0.0088 -0.2 0.0067 0.0065 -2.4

Sway 0.0088 0.0088 -0.1 0.0067 0.0068 0.7

Yaw 0.0163 0.0162 -1.0 0.0128 0.0128 -0.3

Pitch 0.0879 0.0886 0.7 0.0253 0.0257 1.6

Roll 0.0894 0.0902 0.9 0.0256 0.0266 4.0

Heave NA NA NA 0.0276 0.0276 -0.2

Tower FA 0.5782 0.5789 0.1 0.5129 0.5145 0.3

203

that 2.5% relative error), except for the roll frequencies (4% error) with hydrodynamics. Given the results of this section, we204

will continue this study using the OpenFAST linear model. We expect that continuous development of WELIB will further205

narrow the gap with OpenFAST in the future.206

3.4 Aerodynamic estimator207

In Section 3.3, we indicated that the linear models were derived without accounting for aerodynamics. Instead, we choose to208

include the aerodynamic contribution separately within the digital twin. The reason for this choice is that the determination of209

the aerodynamic loads is essential to capturing the main loading and deflections of the structure, in particular the tower, and,210

the aerodynamic loads vary significantly over the range of operating conditions. Therefore, separating this contribution limits211

the need to obtain different linearized models for different operating conditions. We have successfully applied this approach212

in the past (Branlard et al., 2020a). In this work, we extend this approach to accommodate the floating wind application. The213

different elements of the aerodynamic estimator consist of: a torque estimator, aerodynamic maps, and a wind speed estimator.214

3.4.1 Kalman filter for torque estimation215

We assume that the power and rotor speed are reliable measurement signals, and we further assume that the generator torque216

(relative to the low-speed shaft) can be inferred from the power signal as:217

Qg =
P

ψ̇

1
nηDT(ψ̇)

(2)218
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where ηDT is the drivetrain (gearbox and generator) efficiency, and n is the gear ratio. For the TetraSpar, n= 1, and we assume219

ηDT = 1. The dynamics equation of the drivetrain is modeled as:220

JDTψ̈ =Q−Qg (3)221

where JDT is the inertia of the drivetrain about the shaft axis. If we assume that the generator torque is a measurement, then an222

augmented Kalman filter (Lourens et al., 2012) can be used to estimate the aerodynamic torque Q, using the following state223

equation:224




ψ̇

ψ̈

Q̇


 =




0 1 0

0 0 1
JDT

0 0 0







ψ

ψ̇

Q


 +




0

− 1
JDT

0


Qg (4)225

A random walk approach is used for the evolution of the torque, that is, Q̇= 0 and the Kalman filter adds further model noise226

to this equation. The measurement equation of the Kalman filter is:227


 ψ̇

Qg


 =


0 1 0

0 0 0







ψ

ψ̇

Q


 +


0

1


Qg (5)228

In the following, we will write Q̂, the aerodynamic torque obtained using the method outlined above. We will present verifica-229

tion results in Section 3.4.4.230

3.4.2 Aerodynamic maps231

It is commonly accepted that the aerodynamic performances of a wind turbine mostly depends on the tip-speed ratio and the232

pitch angle of the blade. With compliant structures, the bending of the blade, the bending of the tower, and the motions of the233

floating platform (in particular the platform pitch) will also affect the aerodynamic performances. These motions are to a large234

extent a function of the mean wind speed. Therefore, we suggest to tabulate the aerodynamic performances as function of wind235

speed (U ), rotor speed (ψ̇), blade pitch (θp), and platform pitch ϕy (assumed to be in the fore-aft direction). The power and236

thrust coefficients, respectively noted CP and CT , are precomputed using aeroelastic simulations in OpenFAST for a discrete237

set of values of the 4 input parameters. In the simulations, the blade and tower elasticity are accounted for. To limit the number238

of simulations, only the points that are within reasonable proximity of the regular operating conditions of the wind turbine are239

computed. The 4D aerodynamic maps are precomputed as follows:240

CP (U,ψ̇,θp,ϕy), CT (U,ψ̇,θp,ϕy) (6)241

U ∈ {2,3, · · · ,25} m.s−1, ψ̇ ∈ {5,5.5, · · · ,18} rpm, (7)242

θp ∈ {−1,0, · · · ,30} deg, ϕy ∈ {−10,0,15} deg (8)243

The precomputed values are stored in a database.244
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3.4.3 Wind speed estimation245

The digital twin uses the aerodynamic map database to estimate the wind speed and aerodynamic thrust. For a given air density246

(ρ), rotor radius (R), and given measurements ˜̇
ψ, θ̃p, ϕ̃y , the aerodynamic torque and thrust are readily obtained as function of247

wind speed from the database:248

Q(U) =
1
2
ρ
U3

˜̇
ψ
πR2CP (U, ˜̇

ψ, θ̃p, ϕ̃y), T (U) =
1
2
ρU2πR2CT (U, ˜̇

ψ, θ̃p, ϕ̃y) (9)249

where S.I. units are assumed for all variables. For a given estimated torque (Q̂), the estimated wind speed (Û ) is found such250

that:251

Q(Û)− Q̂= 0 (10)252

As illustrated in Figure 5, multiple values of Û can potentially satisfy Equation 10 because the aerodynamic torque is a253

nonlinear function of the wind speed. In such case, we use the steady state operating condition curve of the turbine to chose

4 6 8 10 12 14
Wind Speed [m/s]

0

1

2

Q
/Q

 [-
]

Q

U

Steady operating condition
Q(U) from database
Possible solutions
Point if steady
Selected

Figure 5. Illustration of wind speed estimation in the case where multiple wind speed values match the target torque value Q̂
254

between the multiple solutions (typically two), by selecting the point that is closest to this curve (see Figure 5). A relaxation255

scheme is also used, based on the previous estimate, to alleviate sudden jumps of the estimated wind speed.256

3.4.4 Verification of the aerodynamic estimator257

To verify the aerodynamic estimator, we ran an OpenFAST simulation of the TetraSpar with the “turbulent step” wind field258

mentioned in Section 2.3.2 and irregular waves computed with a significant wave height of Hs = 6 m and a peak spectral259

period of Tp = 14, which represent a fairly extreme sea state for the site of the TetraSpar prototype. The simulated values of260

ψ̇, θp, ϕy , Qg are used as direct input to the aerodynamic estimator. Comparisons of the estimates with the OpenFAST outputs261

are shown in Figure 6. The shaded area on the figure represent the area where the generator torque is zero (turbine spinning262

up), and therefore, the wind speed estimator is not expected to work in that region. The top of the plots indicate the ratio of263
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Figure 6. Example of aerodynamic estimation using “simulated measurements” from OpenFAST. Top: wind speed. Middle: Dimensionless

torque. Bottom: structural inputs from the OpenFAST simulation provided to the estimator.

standard deviations, the mean relative error (ϵ) and the coefficient of determination (R2). Throughout this article, we define the264

mean relative error of a quantity x as:265

ϵ(x) = meani

[ |xest[i]−xref[i]|
mean(|xref|)

]
(11)266

where xest is the estimated signal, xref the reference signal, and x[i] is the value of a signal at the time step i. Using the267

mean of |xref| in the denominator avoids issue related to signals crossing 0. It results in lower mean relative error than if the268

instantaneous value was used, but the metric is still indicative of how far the two signals are on average.269

To quantify the performance of the estimator, we reproduced the simulation above, but adding different noise levels to the270

measurements to account for measurement errors by the sensors. A Gaussian noise signal of zero mean and standard deviation271

rσ is added to each input, where r is the noise level and σ is the standard deviation of the clean input. The results are shown in272

Table 4. As expected, the error in the estimation increases with increasing noise levels. This numerical experiment provides a

Table 4. Mean relative error (ϵ) of the wind speed, torque and thrust estimates, for increasing noise levels.

Noise level 0% 1% 5% 10% 20%

Wind Speed 2.6% 2.6% 3.1% 4.1% 6.7%

Torque 3.5% 3.8% 5.0% 6.8% 11.1%

Thrust 4.1% 5.1% 5.6% 7.3% 11.6%

273

rough quantification of the errors that can be expected from the aerodynamic estimator.274
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3.5 State estimator275

In this work, we follow a similar approach to our previous work (e.g. Branlard et al. (2020a)), where an augmented Kalman276

filter is used to estimate states and loads. The Kalman filter used in the aerodynamic estimator (Section 3.4) is augmented277

with additional states and outputs. The Kalman filter uses two linear models: a state-equation, describing the time evolution of278

the states, and an output equation, describing how the measurements are related to the states and inputs. The state and output279

equations are written:280

δẋKF = XxδxKF + XuδuKF + wx (12)281

δyKF = Y xδxKF + Y uδuKF + wy (13)282

where δxKF, δuKF, and δyKF are the state, input, and output1, respectively, Xx, Xu, Y x, and Y u are the system matrices that283

relate the different system vectors, and, wx and wy are Gaussian processes represented modeling noise. . The output vector,284

δyKF, is also referred to as the “measurement” vector, because it corresponds to the measured signals. At a given time step,285

the Kalman filter algorithm uses the system matrices, a set of measurements, and an a-priori knowledge of the model and286

measurement uncertainties to estimate the state vector (Kalman, 1960; Zarchan and Musoff, 2015).287

In this work, we design the state estimator such that the state vector contains the structural degrees of freedom (δq and δq̇)288

and the aerodynamic torque (Q), and the input vector consists of the thrust (obtained with the aerodynamic estimator), and289

the generator torque (obtained from the power). These design choices were guided by our previous work on the topic. For290

this choice of state and input variables, we build linear models for the state and output equations. We use the linear models291

described in Section 3.3 (the A, B, C, D matrices), to populate the system matrices of the Kalman filter. We provide additional292

details on how the relevant Jacobians are extracted in Section 3.6.1. Given our choice of system vectors, the state equation is:293



δq̇

δq̈

Q̇


 =




0 I 0

A12 A22
∂q̈
∂Q

0 0 0







δq

δq̇

Q


 +




0 0
∂q̈

∂Qg

∂q̈
∂T

0 0





Qg

T


 + wx (14)294

where, A12 and A22 are the two lower blocks of the A matrix, and I is the identity matrix. The Jacobians with respect to the295

loads are extracted from the B and D matrices. A random walk approach is used for the evolution of the torque Q (that is, we296

set Q̇= 0). The output equation, which effectively relates the measurements to the system states and inputs, is set as:297



δq̃

ψ̇

r̈N

Qg




=




∂q̃
∂q

∂q̃
∂q̇

∂q̃
∂Q

0 Ĩ 0
∂r̈N

∂q
∂r̈N

∂q̇
∂r̈N

∂Q

0 0 0







δq

δq̇

Q


 +




0 0

0 0
∂r̈N

∂Qg

∂r̈N

∂T

1 0





Qg

T


 + wy (15)298

where r̈N is the vector of nacelle accelerations, and q̃ = {δx,δy,δϕx, δϕy} is the measurements of surge, sway, roll and pitch299

as given in Table 1.300

1In general, the Kalman filter system vectors are different from the ones used for the linearization presented in Section 3.3, therefore the subscript KF (for

Kalman Filter) is added to these vectors.

14

https://doi.org/10.5194/wes-2023-50
Preprint. Discussion started: 16 May 2023
c© Author(s) 2023. CC BY 4.0 License.



The state and output equations are used as part of a Kalman filter algorithm implemented in WELIB, which continuously301

takes as input the measurements from the wind turbine (corresponding to the left hand side of Equation 15). The process302

and covariance matrices used within the Kalman filter algorithm (determining the values of wx and wy) are populated based303

on the estimated standard deviations of the different states and outputs. At each time step, the thrust is estimated using the304

aerodynamic torque of the previous time step and used as input. The result of the Kalman filter consists of the estimated states305

and outputs at each time step. Sample simulation results will be provided in section 4.306

3.6 Virtual sensing307

Once the states are estimated by the Kalman filter, the virtual sensing step is used to derive quantities of interest (see Figure 1).308

In this work, we focus on the estimation of the sectional loads along the tower using a physics-based model. We investigate309

two methods to obtain these loads.310

3.6.1 OpenFAST linearization outputs311

The first method consists in using the linearization outputs of OpenFAST, namely using a subset of the equation δy = Cδx +312

Dδu (see Section 3.3.1). In general, if a QoI is present in the output vector of OpenFAST, it can be retrieved as follows. If the313

variable is located at the row index k in the vector y, then this variable can be obtained from the states and inputs as:314

[y]k = [δy]k + [y0]k = [C]kδx + [D]kδu + [y0]k (16)315

where [·]k indicates that the row k of the matrix or column vector is used. In our case, [y]k in Equation 16 would for instance316

be the sectional fore-aft bending moment at the height zj along the tower, notedMy(zj). The advantages of using this method317

are multiple: 1) the method is directly applicable to any other outputs computed by OpenFAST, 2) the calculation procedure318

is linear and therefore computationally efficient, 3) if strain measurements are available at given heights, the rows [C]k and319

[D]k could be included in the output equation of the Kalman filter (Equation 15) to provide information about the model’s320

expectation of these measurements, 4) the underlying linear model is consistent with the nonlinear model of OpenFAST. The321

downside of the method is its linearity, in the sense that it is only valid close to the operating point and could lack important322

nonlinear effects. The values of [C]k, [D]k and [y0]k would potentially need to be reevaluated if the system operates away323

from the linearized operating point. One possible solution would be to introduce gain-scheduling to modify the linear system324

based on the estimated wind speed.325

3.6.2 Non-linear calculation (WELIB)326

An alternative method consists in computing the section loads based on first principles using the formulation presented in327

Branlard (2019). The calculation requires a knowledge of the tower-top loads and the full kinematics of the tower and nacelle328

(position, velocity and acceleration). At a given time step, the kinematics are computed based on q, q̇ and q̈. The tower-top329

loads are estimated based on the aerodynamic loads and the inertial loads of the rotor-nacelle assembly. We describe the method330

in more details in Appendix D. The advantages are that nonlinearities are accounted for and the model is valid irrespectively of331
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the operating condition. The downside is that this method does not provide any of the four advantages offered by the OpenFAST332

linearization method.333

3.6.3 Verification of the section loads calculation334

To verify the calculation of the section loads, we use the same “turbulent step” wind field and irregular sea state that was used335

in Section 3.4.4. We assume that the time series of q, q̇ and q̈ are entirely known, extracted from the OpenFAST simulation.336

These time series are provided to the two section loads algorithms: the WELIB nonlinear algorithm, and the OpenFAST linear337

algorithm.338

We run two sets of virtual sensing. In the “ideal” set, the loads at the tower top are extracted from OpenFAST results and339

provided to the two virtual sensing algorithms. In this ideal case, the linearized operating points of the OpenFAST linear340

model is set as the mean of each of the OpenFAST time series values. Results for the ideal case are provided in Figure 7.341

The two algorithms are able to reproduce the section loads of OpenFAST with relatively high accuracy, which verifies our two
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Figure 7. Tower fore-aft bending moment for the “turbulent step” and an irregular sea state as calculated by OpenFAST and compared to

the WELIB nonlinear and OpenFAST linear method. The motion of the structure is determined by OpenFAST and provided to the two

algorithms. The tower-top loads are also provided to the algorithms (“ideal” case, as opposed to Figure 8).
342

calculation procedures.343

In the second set, labeled “unknown thrust”, the tower top loads are not provided to the algorithms, but instead, the aerody-344

namic estimator mentioned in Section 3.4.4 is used to estimate the aerodynamic loads. This time, we do not set the linearized345

operating point of the OpenFAST linear model to the mean value of the time series, but set it to the static equilibrium (without346

loading). The results are provided in Figure 8. The accuracy of the section loads calculation is seen to deteriorate when the347

aerodynamic loads are estimated with the aerodynamic estimator, which is expected. The damage equivalent load computed348

with a Wöhler slope of m= 5 is found to be 3.7% lower with the OpenFAST linear method and 1.2% lower with the YAMS349

nonlinear method compared to the value for reference signal.350

The performances of both algorithms remain satisfactory because we observe that the extrapolated signals follow the refer-351

ence OpenFAST nonlinear simulation. The relative error obtained with the OpenFAST linear algorithm is higher (13.3%) than352
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Figure 8. Tower fore-aft bending moment for the “turbulent step” and an irregular sea state as calculated by OpenFAST and compared to

the WELIB nonlinear and the OpenFAST linear method. The motion of the structure is determined by OpenFAST and provided to the two

other algorithms. The tower-top loads are estimated using the aerodynamic estimator (“unknown thrust” case, as opposed to the ideal case

presented in Figure 7)

the one obtained using the WELIB nonlinear method (8.2%). The main source of error in the linear model is associated with353

the fact that the linearization point was not tuned for this specific simulation. It is our simplifying design choice to use only354

one linearization operating point throughout. Because of the loss of accuracy associated with this design choice, we will use355

the WELIB nonlinear algorithm in the digital twin for the calculation of section loads.356

We note that the variable that affects the most the fore-aft section loads is the platform pitch ( ϕy), the tower fore-aft bending357

degree of freedom (qt), and then, the aerodynamic thrust. In this section, we assumed that all the states where known (including358

ϕy and qt), leading to great accuracy in the estimation of the section loads. The final verification step consists of providing359

estimated states to the algorithm, which is the topic of the next section.360

4 Applications of the digital twin361

In section 3, the different components of the digital twin were introduced and tested using increasing level of complexity. In this362

section, we combine the different components to form the digital twin. We begin using numerical experiments from OpenFAST363

(see Section 2.3.2), similar to what was done in the previous section, before using measurements from the TetraSpar prototype.364

4.1 Numerical experiment365

First, we use the same “turbulent step” wind field and sea state that was used throughout section 3. The augmented states of the366

system are determined at each time step using the state estimator described in Section 3.5. The measurements (see Table 1) are367

taken from the nonlinear OpenFAST simulation. The wind speed and aerodynamic loads are estimated using the aerodynamic368

estimator described in Section 3.4. The linear model is derived from linearized OpenFAST while the section loads in the tower369

are obtained using the WELIB virtual sensing algorithm described in Section 3.6. The estimates from the digital twin are370
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compared with the reference nonlinear OpenFAST simulation results in Figure 9. A visual inspection of the time series reveals

Q
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]
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Figure 9. Estimated signals from the digital twin compared to results from an nonlinear OpenFAST simulation using the turbulent-step

numerical experiment. From top to bottom: aerodynamic torque (Q), aerodynamic thrust (T ), tower-top position (qt), tower-bottom fore-aft

bending moment (My , TB). Results are made dimensionless for confidentiality reasons.
371

that the digital twin is able to capture the main trends and fluctuations of the different signals. The match can be considered372

remarkable given that only the sensors provided in Table 1 are used by the digital twin. Metrics such as mean relative error (ϵ),373

and coefficient of determination (R2) are indicated on the figure. Despite the visually appealing match, the metrics indicate374

that the tower-bottom moment has a mean error of ϵ= 21%. The damage equivalent load of the tower-bottom moment is375

underestimated by ϵ̃Leq
=−21%, where we define:376

ϵ̃(Leq) =
Leq,est−Leq,ref

Leq,ref
(17)377

Differences in damage equivalent loads typically indicate differences in the frequency content of the signals. We compare378

the frequency content of the estimated signals with the reference signals in Figure 10. The low-frequency content (below 1 Hz)379

is reasonably well captured, in line with the visual inspection of Figure 9. Unfortunately, no clear trend is found for the high380

frequency content: the power spectra of the aerodynamic loads indicate an underestimation whereas the spectra of the tower-top381

position and tower-bottom bending moment tend to have higher energy content. As shown in previous studies (Branlard et al.,382

2020a), adequate filtering of the input measurements can be used to tune the energy content at high frequencies.383

To quantify the errors in the estimation under a wider set of operating conditions, we ran 10-min simulations for a set of384

wind speeds under normal turbulent conditions and sea states. We selected wind speeds from 5 to 20 m/s using 10 different385

seeds per bin of wind speed. The seeds are used to randomise the turbulent field and sea states. The wind speed range is selected386

such as to avoid cut-in and cut-out events where the aerodynamic estimator is not expected to perform well. The turbulence387
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Figure 10. Power spectral density of the time series presented in Figure 9. A logarithmic scale is used on the y axis.

intensity is selected based on the normal turbulence model for a turbine of class “A”. The wave height and wave period are set388

as function of the wind speed as: Hs(U) = 0.16U +1 and Tp = 0.09U +5.57 , based on the sea state measurements at the test389

site. OpenFAST simulations were run for each case, and then the digital twin was run using these numerical measurements. A390

summary of the mean relative error on some key estimated quantities is given in Figure 11. We observe that the mean relative
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Figure 11. Mean relative error of estimated signals for various wind speed and seeds. Clockwise: wind speed (U), aerodynamic loads, tower-

bottom moment (My TB), and damage equivalent load of the tower-bottom moment (Leq,My TB). The individual simulations are indicated

by transparent markers. The average over each seed is indicated using plain lines.

391

error of the wind speed and aerodynamic loads are between 5% and 15% with a tendency for larger errors on the aerodynamic392

loads at low and high wind speeds. The error further propagates within the system and the tower-bottom moment is estimated393

with a relative error between 10% and 40%. The error levels indicate that the aerodynamic estimator, which is based on quasi-394
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steady rotor-averaged aerodynamics, cannot fully capture the dynamic aerodynamic state of the rotor in floating conditions.395

In general, the digital twin lacks sufficient information to fully capture the tower-top loads and the frequency content of the396

system. It is expected that placing additional sensors, such as accelerometers or load cells along the tower, can significantly397

improve the estimation of the tower loads (in that case, we would either use OpenFAST linearization outputs, or, an extended398

Kalman filter and a non-linear model for the outputs). As seen in Figure 11, the relative error levels on the damage equivalent399

loads are between −10% and 5%, with the loads being either overestimated or underestimated depending on the wind speed.400

The structural health monitoring system could potentially use the estimated error levels indicated in Figure 11 to provide a401

confidence interval on the fatigue life time of the tower. We note that these error levels represent a best case scenario, because402

we assumed that no noise or biases were present in the measurements. We expect the error levels to increase with additional403

measurement noise.404

4.2 Estimations using measurements from the full-scale prototype405

In this section, we use measurements from the full-scale TetraSpar prototype installed off the Norwegian coast. Four days406

of data were selected based on data availability; a wide range of wind speeds are present in the time series. Two days were407

selected in summer and two in winter to account for potential seasonality. Apart from these criteria, the selection of time408

series can be considered random. The measurement data is stored as 10-min time series sampled at 25 Hz. The total number409

of 10-min samples used over the four days is 576. The measurement data is provided to the digital twin to perform the state410

estimation and virtual sensing. The state estimation is currently 10 times faster than realtime. The virtual sensing step is half411

realtime but computational improvements are possible, in particular, by using a compiled language instead of Python. The412

prototype is equipped with load cells at the tower top, middle and bottom, and nacelle wind speed measurements. We use these413

measurements to compare with the digital twin estimates. A sample of results is provided in Figure 12. The figure illustrates414

a selected case where the estimation of the tower load is reasonably accurate, with an error on the damage equivalent load of415

only 0.4%. We note that the wind speed from the measurement is a point measurement, and it is therefore not expected to be
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Figure 12. Comparison of digital twin outputs with wind speed and tower-bottom moment measurements from the TetraSpar prototype. The

measured wind speed comes from a nacelle anenometer and therefore is expected to differ from the rotor-averaged value estimated by the

digital twin.

416

in strong agreement with the digital twin estimate which is representative of a rotor-averaged wind speed.417
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An aggregate of results from all the 10-min digital twin runs is illustrated in Figure 13. The figure shows relative errors in
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Figure 13. Similar to Figure 11 but using measurements from the Tetra Spar prototype. Each marker indicate a 10 min simulation result.

The bottom plots are for the tower bottom (TB) and tower middle (TM) bending moments.

418

wind speed, thrust, and damage equivalent loads at the tower bottom and tower middle. As indicated previously, the wind speed419

from the digital twin and the measurements are different quantities, but the level of error obtained indicates that the digital twin420

is able to capture the main level of wind speed. The aerodynamic thrust from the aerodynamic estimator is compared with the421

load cell at the tower top in the fore-aft direction. This is a crude first-order approximation, but the overall estimated levels422

appears to be on average around 10% from the measured ones. The tower damage equivalent loads are on average within±10%423

of the values obtained from the measurements, but some cases show errors ranging between ±50%. To give perspective on424

the large values taken by the metrics, we illustrate two cases with large errors in Figure 14 and Figure 15. In both cases, we

7.5

10.0

12.5

W
S 

[m
/s

]

= 11.2% - est/ ref = 1.927

Reference (Measurements)
Digital twin

0 Time [s] 600

  

  

M
y T

B 
[-]

= 20.6% - est/ ref = 0.934 - Leq = 0.5%

Figure 14. Similar to Figure 12, but for a case where a clear offset is present in the tower loads.

425

observe that the estimator is capturing the trends and low frequencies with accuracies that, from a pure qualitative perspective,426

would appear satisfactory. As seen in Figure 14, an offset is present in the signal, which indicates that some physics might be427

missing from the load virtual sensing, or that the state estimator is failing. In Figure 14, the overall load level is well captured,428

but the error in the damage equivalent load is ϵLeq is 33%. As illustrated in Figure 10, our current method fails at capturing the429
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Figure 15. Similar to Figure 12, but for a case where a large error in damage equivalent load is observed.

high-frequency content of the signals, which can have a significant impact on the accuracy of the damage equivalent loads. In430

spite of these challenges, the average accuracy of 10% is promising and indicates that the current methodology can be used to431

reconstruct some structural and environmental signals from a limited number of readily-available sensors.432

5 Conclusions433

In this work, we implemented, verified, and validated a physics-based digital twin solution applied to a floating offshore wind434

turbine. The work focused on the estimation of the aerodynamic loads and the section loads along the tower, using a set of435

measurements that we expect to be available on any existing wind turbine (power, pitch, rotor speed, and tower acceleration),436

and motion sensors that are likely to be standard measurements for a floating platform (inclination and GPS sensors). The key437

concept behind our approach consists in using: 1) a Kalman filter to estimate the structural states based on a linear model of the438

structure and measurements from the turbine, 2) an aerodynamic estimator, and 3) a physics-based virtual sensing procedure439

to obtain the loads along the tower. An important part of the work consisted in developing the methodology and implementing440

the tools and models necessary for the aerodynamic estimation, state estimation, and load virtual sensing. We explored two441

different pathways to obtain models: a suite of Python tools, or OpenFAST linearization. We used components from both442

approaches for the digital twin.443

Using numerical experiments, we found that the accuracy of the individual models were typically in the order of 5%. When444

comparing the digital twin estimations with the measurements from the TetraSpar prototype, the errors increased to 10%-445

15% on average for the quantities of interest. Overall, the accuracy of the results appeared promising given the scope of our446

work, which aimed at illustrating a proof of concept for a floating wind turbine digital twin. We observed non-negligible447

scatter of results for the estimation of the tower damage equivalent loads that we attributed to the difficulty of capturing448

high-frequency content. Future work, should therefore explore possible improvements of the method to address this issue.449

Additional improvements could include: gain-scheduling of the linear models, using nonlinear models and extended Kalman450

filtering techniques, introducing additional degrees of freedom and a full account of the yawing of the nacelle, adding a model451

to account for wave excitation forces, introducing additional measurements, improving the robustness of the aerodynamic452
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estimator (in particular beyond the cut-in and cut-out wind speed), and expanding the virtual sensing steps to estimate additional453

signals.454
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Appendix A: Linearization of the equations of motion with augmented inputs468

In this section, we describe the procedure used to linearize the structural equations of motion without a knowledge of the external loads,469

which is used to obtain Equation 1. We write the implicit form of the equations of motion as470

e(q, q̇, q̈, ũ, t) = 0 (A1)471

where q, q̇, q̈ and ũ are the degrees of freedom, velocities, accelerations and “augmented inputs” of the model, respectively. The term472

augmented input is used because the external loads are included in this vector. The external loads are (in general) a function of the degrees473

of freedom. Therefore, we write the augmented input vector as:474

ũ = ũ(q, q̇, q̈,u) (A2)475
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where u is the vector of inputs in the classical sense, that is, consisting of system inputs that do not depend on the degrees of freedom (for476

instance, the wave elevation). The operating point is written using the subscript “0”, and defined as:477

e(q0, q̇0, q̈0, ũ0, t) = 0 (A3)478

We perturb each variable, as q = q0 +δq, q̇ = q̇0 +δq̇, etc., where δ indicates a small perturbation of the quantities. The perturbation of the479

augmented input is then:480

ũ = ũ(q0, q̇0, q̈0,u0)+
∂ũ

∂q

∣∣∣∣
0

δq+
∂ũ

∂q̇

∣∣∣∣
0

δq̇+
∂ũ

∂q̈

∣∣∣∣
0

δq̈+
∂ũ

∂u

∣∣∣∣
0

δu (A4)481

where |0 indicates that the expressions are evaluated at the operating point. The linearized equations are obtained using a Taylor-Series482

expansion:483 [
M0−Q0

∂ũ

∂q̈

∣∣∣∣
0

]
δq̈+

[
C0−Q0

∂ũ

∂q̇

∣∣∣∣
0

]
δq̇+

[
K0−Q0

∂ũ

∂q

∣∣∣∣
0

]
δq = Q0

∂ũ

∂u

∣∣∣∣
0

δu (A5)484

with485

M0 =− ∂e

∂q̈

∣∣∣∣
0

, C0 =− ∂e

∂q̇

∣∣∣∣
0

, K0 =− ∂e

∂q

∣∣∣∣
0

, Q0 =
∂e

∂u

∣∣∣∣
0

(A6)486

and where M0, C0, K0 are the linear mass, damping, and stiffness matrices, Q0 is the linear forcing vector, also called input matrix.487

Appendix B: Transfer of a Jacobian from one destination point to another488

The Jacobians provided by OpenFAST and MAP are provided at given nodes of the structure (e.g. the hydrodynamic nodes, or the fairleads).489

In this section, we highlight the procedure to transfer these Jacobians to another node (the platform reference point) assuming a rigid-body490

relationship between the nodes. The procedure is used in this work to compute the linear 6× 6 matrix for the hydrodynamics and mooring491

dynamics in Section 3.3.2. We obtain different relationships depending if the destination point is assumed to be displaced or not.492

B1 Transfer of Jacobians between two points493

We consider a point source (noted S) and a destination point (noted D). The notations are illustrated in Figure B1. We assume a rigid-body

rD0
F S0

s0

rS0

δuD

rS

s
rD

δθ

δuS

D

S

Figure B1. Rigid-body kinematics with the loads from one source point (S) transferred to ta destination point (D), assuming small motion

of the points.
494

relationship between the two points. The forces and moments at the destination and source are related as follows:495

FD = F S (B1)496

MD = MS + s̃F S (B2)497
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where s = rS − rD is the vector from destination point to the source point, F S and MS are the force and moments, respectively, at point498

S, and the tilde notation refers to the skew symmetric matrix which is a matrix representation of the cross product. We seek to linearize499

Equation B1 and Equation B2 for small displacements and rotations of the destination and source nodes. In particular, we seek to express500

the Jacobians at the destination node as function of the source node, assuming a rigid-body relationship between the two. The rigid-body501

relationship linking the small displacements (δu) and small rotations (δθ) of the source and destination points is:502

δuD = δuS + s̃0δθS503

δθD = δθS (B3)504

where s0 is the vector between the source and destination points at the operating point (prior to the perturbation). The Jacobians of the505

transformations given in Equation B3 (and its inverse) are:506  ∂uD
∂uS

∂uD
∂θS

∂θD
∂uS

∂θD
∂θS

 =

I s̃0

0 I

 ,
 ∂uS

∂uD

∂uS
∂θD

∂θS
∂uD

∂θS
∂θD

 =

I −s̃0

0 I

 (B4)507

To linearize Equation B1 and Equation B2, we introduce the following perturbations:508

FD = FD0 + δFD, F S = F S0 + δF S (B5)509

MD = MD0 + δMD, MS = MS0 + δMS , (B6)510

where the subscript 0 indicates values at the operating point. At the operating point, Equation B1 and Equation B2 are satisfied, that is:511

FD0 = F S0 (B7)512

MD0 = MS0 + s̃0F S0 (B8)513

Transfer of forces514

Inserting Equation B5 into Equation B1 leads to:515

FD0 + δFD = F S0 + δF S (B9)516

Which, using Equation B7, leads to:517

δFD = δF S (B10)518

The Jacobians of the loads at nodeD with respect to the displacements at nodeD are then obtained by applying the chain rule to Equation B10519

and making use of the Jacobian of the displacements given in the right of Equation B4. For instance, for the force:520

∂FD

∂uD
=
∂F S

∂uS

∂uS

∂uD
+
∂F S

∂θS

∂θS

∂uD
=
∂F S

∂uS
521

∂FD

∂θD
=
∂F S

∂uS

∂uS

∂θD
+
∂F S

∂θS

∂θS

∂θD
=
∂F S

∂θS
− ∂F S

∂uS
s̃0 (B11)522

For the transfer of the moments, the relationship will be different whether the moments are transferred at the undisplaced destination point,523

or the displaced destination point.524
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Moments at the undisplaced destination point525

In this section, the moments are transferred to the undisplaced destination point. The vector from undisplaced destination point to the526

displaced source is:527

r = s0 + δuS (B12)528

Introducing Equation B6 and Equation B12 into Equation B2, and temporarily using the “×” notation instead of the tilde notation:529

MD0 + δMD = MS0 + δMS + s0×F S0 + s0× δF S + δuS ×F S0 + δuS × δF S (B13)530

Making use of Equation B8, neglecting the non-linear term (δuS × δF S) and reintroducing the tilde notation, leads to:531

δMD = δMS + s̃0δF S − F̃ S0δuS (B14)532

The Jacobians of the moments at the undisplaced node D with respect to the displacements at node D are then obtained by applying the533

chain rule to Equation B14:534

∂MD

∂uD
=
∂MS

∂uS

∂uS

∂uD
+
∂MS

∂θS

∂θS

∂uD
+ s̃0

[
∂F S

∂uS

∂uS

∂uD
+
∂F S

∂θS

∂θS

∂uD

]
− F̃ S0

∂uS

∂uD
535

=
∂MS

∂uS
+ s̃0

∂F S

∂uS
− F̃ S0 (B15)536

and537

∂MD

∂θD
=
∂MS

∂θS

∂θS

∂θD
+
∂MS

∂uS

∂uS

∂θD
+ s̃0

[
∂F S

∂θS

∂θS

∂θD
+
∂F S

∂uS

∂uS

∂θD

]
− F̃ S0

∂uS

∂θD
538

=
∂MS

∂θS
− ∂MS

∂uS
s̃0 + s̃0

∂F S

∂θS
− s̃0

∂F S

∂uS
s̃0 + F̃ S0s̃0 (B16)539

Jacobian relationships at the undisplaced destination point540

Equation B11, Equation B16 and Equation B15 can be gathered in matricial form to relate the different Jacobians between the source point541

and the undisplaced destination point:542  ∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD


undisplaced

=

 I 0

s̃0 I

 ∂FS
∂uS

∂FS
∂θS

∂MS
∂uS

∂MS
∂θS

I −s̃0

0 I

+

 0 0

−F̃ S0 F̃ S0s̃0

 (B17)543

Moments at the displaced destination point544

In this section, the moments are transferred to the displaced destination point. The vector from the displaced destination point to the displaced545

source is:546

r = s0 + δuS − δuD = s0− s̃0δθS (B18)547

Introducing Equation B6 and Equation B18 into Equation B2, and temporarily using the “×” notation instead of the tilde notation:548

MD0 + δMD = MS0 + δMS + s0×F S0 + s0× δF S − (s0× δθS)×F S0− (s0× δθS)× δF S (B19)549
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Making use of Equation B8, neglecting the non-linear term ((s0× δθS)× δF S) and reintroducing the tilde notation, leads to:550

δMD = δMS + s̃0δF S + F̃ S0s̃0δθS (B20)551

The Jacobians of the loads at the displaced node D with respect to the displacements at node D are then obtained by applying the chain rule552

to Equation B20 and making use of the Jacobian of the displacements given in the right of Equation B4.553

∂MD

∂uD
=
∂MS

∂uS

∂uS

∂uD
+
∂MS

∂θS

∂θS

∂uD
+ s̃0

∂F S

∂uS
554

=
∂MS

∂uS
+ s̃0

∂F S

∂uS
(B21)555

and556

∂MD

∂θD
=
∂MS

∂uS

∂uS

∂θD
+
∂MS

∂θS

∂θS

∂θD
+ s̃0

∂F S

∂θD
+ F̃ S0s̃0557

=
∂MS

∂θS
− ∂MS

∂uS
s̃0 + s̃0

∂F S

∂θD
+ F̃ S0s̃0558

=
∂MS

∂θS
− ∂MS

∂uS
s̃0 + s̃0

∂F S

∂θS
− s̃0

∂F S

∂uS
s̃0 + F̃ S0s̃0 (B22)559

Jacobian relationships at the displaced destination point560

Equation B11, Equation B22 and Equation B21 can be gathered in matricial form to relate the different Jacobians:561  ∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD


displaced

=

 I 0

s̃0 I

 ∂FS
∂uS

∂FS
∂θS

∂MS
∂uS

∂MS
∂θS

I −s̃0

0 I

+

0 0

0 F̃ S0s̃0

 (B23)562

B2 Relationships at the displaced destination point for multiple source points563

We now consider the case where multiple point sources are present. The derivation can be seen as a generalization of the previous case564

between two points, but special care is needed. The notations are illustrated in Figure B2. The loads at the destination points are obtained as:

rD0

rk0

F k0

sk0

rj0

δuD

rk

sk
rD

δuk

δθD

δuj

Sj

Sk

D

Figure B2. Rigid-body kinematics with the loads from multiple source points (Sj), transferred to a destination point (D)

565

FD =
∑

k

F k (B24)566

MD =
∑

k

Mk + s̃kF k (B25)567
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where k is an index looping over all points of the rigid structure. To shorten notations, we define the vector between the destination point and568

a given point as:569

sk = rk − rD (B26)570

sk0 = rk0− rD0 (B27)571

where sk is the vector between the displaced points and sk0 is the vector prior to the displacement (at the operating condition). Due to the572

rigid-body assumption, the elementary displacements of the points are related as follows:573

δuD = δuj + s̃j0δθj574

δθD = δθj (B28)575

from which one obtains the following useful relationships:576

∂uj

∂uD
= I,

∂θj

∂uD
= O,

∂uj

∂θD
=−s̃j0,

∂θj

∂θD
= I,

∂θj

∂θk
= Iδjk,

∂θj

∂uk
= O (B29)577

Using a similar Taylor expansion as for the case with two nodes, the perturbation loads are obtained as:578

δFD =
∑

k

δF k (B30)579

δMD =
∑

k

δMk + s̃k0δF k + F̃ k0(s̃k0δθk) (B31)580

The chain rule for a given quantity of interest (Q) is obtained by summing over all the elementary variables:581

dQ=
∑

j

∂Q

∂uj
duj +

∂Q

∂θj
dθj (B32)582

For instance, the application of the chain rule to FD and using Equation B30 leads to:583

∂FD

∂uD
=

∑
j

∂FD

∂uj

∂uj

∂uD
+
∂FD

∂θj

∂θj

∂uD
=

∑
j

∑
k

∂F k

∂uj

∂uj

∂uD
+
∂F k

∂θj

∂θj

∂uD
=

∑
j

∑
k

∂F k

∂uj
(B33)584

Eventually, the Jacobians at the displaced destination node are obtained as:585  ∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD


displaced

=
∑

j

∑
k

 I 0

s̃k0 I

 ∂Fk
∂uj

∂Fk
∂θj

∂Mk
∂uj

∂Mk
∂θj

I −s̃j0

0 I

+

0 0

0 F̃ j0s̃j0

 (B34)586

Appendix C: Verification of the linear models587

In this section, we supplement the results given in Section 3.3.3, by showing free-decay results without hydrodynamics (no added mass,588

damping, hydrostatics). We show results with the structure only in Figure C1, and results with the structure and moorings in Figure C2.589

These results also include the nonlinear WELIB formulation. A strong agreement is found between the nonlinear OpenFAST and WELIB590

models, and between the linear OpenFAST and WELIB models. The yaw degree of freedom appears to be more challenging to capture for591

the linear models.592
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Figure C1. Free decay of the structure using non linear and linear models for a case including only the structure (no moorings, no hydrody-

namics). Time series of the main DOFs.
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Figure C2. Free decay of the structure using non linear and linear models for a case including moorings (no hydrodynamics). Time series of

the main DOFs.

Appendix D: Computation of section loads593

In this section, we describe the nonlinear calculation procedure used in Section 3.6.2 to assess the section loads along the tower based on594

estimates of the structure kinematics and the loads at the tower top. For conciseness, in this appendix, we use x and z for the coordinates595

along the tower fore-aft and tower height, respectively, instead of xT and zT .596

D1 Tower fore-aft bending moment and shear force597

The fore-aft and side-side loads are computed the same way, therefore this section focuses on the fore-aft direction. The sectional fore-aft598

bending moment at a given tower height z is determined as:599

My(z) =My,top −
LT∫
z

Sx(z′)dz′ (D1)600

where My,top is the fore-aft bending moment at the tower top and Sx is the shear force in the x direction, obtained as:601

Sx(z) =

LT∫
z

px,all(z
′)dz′ (D2)602
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where px,all is the force per length acting on the tower section in the fore-aft direction, including contributions from the external loads603

(aerodynamic loads on the structure), inertial loads due to the acceleration of the structure (including gravity), and nonlinear correction terms604

from the loads in the z direction (p−∆ effect, including self-weight effects). The different contributions are written as follows:605

px,all = px,ext + px,corr − px,acc (D3)606

In this work, we neglect the external loads on the tower, px,ext = 0 (aerodynamic loads on the tower are typically small relative to rotor-thrust607

loads for an operating wind turbine). The acceleration contribution is px,acc =−m(z)(ax,struct(z)− ax,grav), where m is the mass per length608

along the beam, and ax,struct(z) is the acceleration of the section, determined based on the rigid-body acceleration of the floater and the elastic609

motion of the tower (q̇T and q̈T ), and ax,grav is the acceleration of gravity in the x direction. The p−∆ correction term due to the vertical610

loading is computed as (see Branlard (2019)):611

px,corr =
d2Φ

d2z

 L∫
z

pz dx
′+

∑
zk≥z

Fz,k

− dΦ

dz

[
pz +

∑
k

Fz,kδ(z− zk)

]
(D4)612

where pz is the vertical load per length (mostly consisting of the self-weight), Fz,k is the k-th vertical force acting at point zk, and δ is the613

Dirac function, and Φ is the shape function used to describe the tower displacement field (see Section 2.3.3). In our case, only the vertical614

force acting on top of the tower is present, z1 = LT andFz,1 = Fz,top. The procedure is similar to compute the section loads in the y direction615

(using the p−∆ correction as well).616

D2 Tower and RNA kinematics617

The determination of the tower section loads require a knowledge of the tower kinematics, to compute astruct, and the RNA kinematics, to618

compute the inertial contribution to the tower top loads (see Section D3). The position, linear velocity, linear acceleration, rotational speed,619

and rotational acceleration of the floater (point F , body f ) are given respectively by:620

rF = {x,y,z}i, vF = {ẋ, ẏ, ż}i, aF = {ẍ, ÿ, z̈}i, (D5)621

ωf = {ϕ̇z, ϕ̇y, ϕ̇z}i, ω̇f = {ϕ̈z, ϕ̈y, ϕ̈z}i (D6)622

where the notation i indicates that the coordinates of the vector are expressed in the inertial coordinate system. The transformation matrix623

from the floater to the inertial frame is obtained as: Rf2i = R(ϕx,ϕy,ϕz). where R is a function computing the rotation matrix. The tower624

base (point T , body t) kinematics are obtained from the floater using rigid body kinematics:625

rT = rF + rFT , (D7)626

vT = vF +ωf × rFT , (D8)627

aT = aF +ωf × (ωf × rFT )+ ω̇f × rFT , (D9)628

ωt = ωf , ω̇t = ω̇f , Rt2i = Rf2i (D10)629
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where rFT is the vector from the floater point to the tower base. The kinematics of a given tower section (point S, at height z) are given by:630

rS = rT + rTS = rT + rTS0 +uS , (D11)631

vS = vT +ωt× rTS + u̇S , (D12)632

aS = aT +ωt× (ωt× rTS)+ ω̇t× rTS +2ωt× u̇S + üS , (D13)633

ωs = ωt +ωts, (D14)634

ω̇s = ω̇t + ω̇ts +ωt×ωts, (D15)635

where rTS0 = zẑt is the vector from the tower base to the undeflected section, uS , u̇S , üS are the elastic motions of the section computed636

based on the shape function and the generalized coordinates, e.g. uS(z) =
∑

j qt,jΦj = qtΦ(z)x̂t (see e.g. Branlard and Geisler (2022)).637

We note that OpenFAST also includes a vertical motion (referred to as a “geometric nonlinearity”) associated with the deflection, which we638

are currently neglecting in this work. The transformation matrix from the section to the tower is Rs2t = R(−u′S,y,u
′
S,x,0), where uS,y and639

uS,x are the components of uS in the tower coordinate system, and the prime notation indicates the differentiation with respect to z. The640

rotation speed and acceleration of the tower section with respect to the tower base are:641

ωts =
{
u̇′S,y, u̇

′
S,x,0

}
t
, ω̇ts =

{
ü′S,y, ü

′
S,x,0

}
t

(D16)642

The kinematics of the tower-top point and nacelle (point N , body n) are taken from the last section node (point S with z = LT ). Yawing,643

tilting, and rolling of the tower top would change the orientation matrix, rotational velocity and rotational acceleration of the nacelle. These644

kinematics are omitted here for conciseness. The kinematics of the center of mass of the RNA (point G) are obtained using rigid-body645

kinematics (identical to what was used between point F and T ).646

D3 Tower-top loads647

The tower-top loads are computed as follows:648

F top = F aero −F inertia (D17)649

Mtop = Maero −Minertia (D18)650

where the aerodynamic loads are transferred to the tower top and where the inertial loads from the rigid-body RNA are:651

F inertia =MRNA(aG− g) (D19)652

Minertia = rNG×F inertia +JG · ω̇n +ωn× (JG ·ωn) (D20)653

where: rNG is the vector from the tower top to the center of mass of the RNA, MRNA is the mass of the RNA, JG is the inertia tensor of the654

RNA at it’s center of mass, aG is the linear acceleration of the center of mass of the RNA, ωn is the rotational acceleration of the RNA, ω̇n655

is the rotational acceleration of the nacelle. The load calculation is first done in the coordinate system of the nacelle, and then transferred to656

the coordinate system of the tower where Equation D1 is defined.657
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